Giáo trình Kinh tế lượng (Phần 2) - Ebook

pdf
Số trang Giáo trình Kinh tế lượng (Phần 2) - Ebook 14 Cỡ tệp Giáo trình Kinh tế lượng (Phần 2) - Ebook 349 KB Lượt tải Giáo trình Kinh tế lượng (Phần 2) - Ebook 0 Lượt đọc Giáo trình Kinh tế lượng (Phần 2) - Ebook 6
Đánh giá Giáo trình Kinh tế lượng (Phần 2) - Ebook
4.4 ( 17 lượt)
Nhấn vào bên dưới để tải tài liệu
Đang xem trước 10 trên tổng 14 trang, để tải xuống xem đầy đủ hãy nhấn vào bên trên
Chủ đề liên quan

Nội dung

Kinh tế lượng ©2007 CHƯƠNG 2: HỒI QUI ĐƠN BIẾN Ở bài trước, ta nêu lên ví dụ về mối quan hệ giữa khối lượng và trọng lượng của các mẫu nước. Dựa trên việc lấy các mẫu thử {x n , y n }nN=1 , chúng ta có thể ước lượng, hay tìm lại mối quan hệ tuyến tính Y = α + β X , mà nó thể hiện quy luật vật lý, hay tính xu thế, ổn định giữa hai đại lượng ngẫu nhiên là trọng lượng và khối lượng nước. Trong chương này, chúng ta sẽ giới thiệu việc ước lượng các quy luật tự nhiên, kinh tế, hay xã hội kiểu như vậy thông qua phương pháp hồi quy đơn (simple regression). Chúng ta sẽ sử dụng học thuyết Keynes về tiêu dùng như là ví dụ điển hình cho việc giới thiệu phương pháp xây dựng và ước lượng mô hình hồi qui đơn biến. 2.1 Học thuyết Keynes về tiêu dùng Chúng ta hãy trích định luật sau, nêu ra bởi Keynes (1936) trong Lý thuyết tổng quát (general Theory) của ông: Chúng ta sẽ xác định quy luật mà ta gọi là khuynh hướng tiêu dùng theo thu nhập như là một mối quan hệ phụ thuộc f giữa X, được gọi là mức thu nhập khả dụng, và Y là chi tiêu cho tiêu dùng từ thu nhập đó, và vì vậy: Y = f ( X ) . - Số tiền mà từng hộ gia đình chi tiêu cho tiêu dùng phụ thuộc (i) một phần vào thu nhập của hộ đó, (ii) vào những yếu tố khách quan khác của hoàn cảnh sống, và (iii) một phần vào đòi hỏi có tính thiết yếu, thói quen và những yếu tố tâm lý của các cá nhân trong hộ gia đình đó…. - Luật tâm sinh lý cơ bản mà chúng ta dựa vào một cách rất tin cậy, được kiểm chứng bới tri thức của chúng ta về loài người, và bởi kinh nghiệm, rằng con người có xu hướng tăng dY tiêu dùng khi thu nhập của họ tăng, nhưng tăng không nhanh bằng thu nhập. Tức là dX là dương và nhỏ hơn 1. - Về trung bình, nếu thu nhập tăng lên thì khoảng cách giữa tiêu dùng và thu nhập ngày càng mở rộng, nghĩa là có một tỉ lệ lớn hơn trong thu nhập được đưa vào tiết kiệm khi thu nhập tăng lên. Lý thuyết của Keynes đã đặt một mối quan hệ ổn định giữa tiêu dùng và thu nhập Y = f ( X ) . Chúng ta muốn xác định cụ thể mối quan hệ này là như thế nào, tìm cách đo lường quan hệ đó, và kiểm định lại tính đích thức của học thuyết Keynes. 2.2 Cơ sở vi mô cho học thuyết Keynes về tiêu dùng Lê Hồng Nhật Trần Thiện Trúc Phượng 1 Kinh tế lượng ©2007 Gọi X là mức thu nhập dùng để chi cho tiêu dùng và tiết kiệm (nhằm tăng tiêu dùng cho tương lai). Gọi Y là mức tiêu dùng hiện tại; và S là tiêu dùng trong tương lai. Khi đó, ta có ràng buộc ngân sách (budget constraint): Y+ 1 S=X 1+ r (2.1) 1 S là khoản tiết kiệm. Nó thể hiện giá trị hiện tại 1+ r 1 (present value) của thu nhập cho tiêu dùng trong tương lai S, được chiết khấu bởi . 1+ r Trong đó, r là lãi suất tiền gửi tiết kiệm. Thành phần thứ hai trong vế trái Về thực chất, 1 đồng tiền ngày hôm nay có thể sinh ra (1 + r ) đồng thu nhập cho tiêu dùng ngày mai, nếu được gửi vào tiết kiệm. Vì vậy, 1 đồng tiền tiêu trong tương lai chỉ có giá 1 bằng đồng tiền ngày hôm nay. Đó chính là khái niệm về hệ số chiết khấu (discount 1+ r rate). Nó thể hiện rằng, nếu tiêu dùng bị trì hoãn đi tới một thời điểm trong tương lai, thì nó không thề có giá trị bằng việc được tiêu dùng ngay lập tức vào ngày hôm nay. Tiếp theo, chúng ta hãy đo lường mức độ thỏa dụng của cá nhân với các lựa chọn khác nhau về tiêu dùng cho hiện tại và cho tương lai (Y, S). S + + _ + A _ _ Y Đồ thị 2.1: Đường bàng quan (indifference curve) Trong đồ thị 2.1, điểm A thể hiện mức thỏa dụng hiện tại của cá nhân ứng với mức tiêu dùng tại điểm đó. Giả sử có một sự gia tăng về tiêu dùng hiện tại, trong khi tiêu dùng trong Lê Hồng Nhật Trần Thiện Trúc Phượng 2 Kinh tế lượng ©2007 tương lai vẫn giữ nguyên. Khi đó ta dịch chuyển từ điểm A sang bên phải và song song với trục hoành ( → + ) . Dấu cộngthể hiện rằng độ thỏa dụng của cá nhân được nâng lên. Ngược lại, giả sử ta giữ nguyên mức tiêu dùng hiện tại, nhưng tiêu dùng tương lai được tăng lên ( ↑ + ). Khi đó, sự cảm nhận về an toàn của cá nhân về cuộc sống tương lai cũng tăng, tức là độ thỏa dụng của cá nhân đó tăng. Vì vậy, ¼ không gian, được xác định bởi sự gia tăng của tiêu dùng hiện tại ( → + ) , hoặc tiêu dùng trong tương lai ( ↑ + ), hoặc sự gia tăng đồng thời của cả hai yếu tố đó, thể hiện độ thỏa dụng ngày càng tăng lên (+). Cá nhân cảm thấy giàu lên, sung sướng và an toàn hơn về vật chất. Phân tích tương tự cho trường hợp ngược lại, khi độ thỏa dụng ngày càng giảm (-). Trong ngắn hạn, mức thu nhập là không đổi. Do đó, sự gia tăng mức tiêu dùng hiện tại thường phải bị đánh đổi (hay trả giá) bằng việc giảm tiêu dùng trong tương lai. Tuy nhiên, cá nhân chỉ làm sự đánh đổi như vậy một khi độ thỏa dụng mới ít ra là không kém đi so với trạng thái đã có. Trong kinh tế học vi mô, người ta thể hiện các lựa chọn như vậy bằng đường bàng quan (indifference curve). Nó có chiều dốc xuống mô tả sự đánh đổi. Nghĩa là, nếu muốn tăng mức tiêu dùng trong hiện tại thì phải giảm mức tiêu dùng trong tương lai, sao cho lợi ích hay độ thỏa dụng vẫn giữ nguyên. Bây giờ, hãy đưa đường ràng buộc ngân sách vào đồ thị 2.1. Điểm tiếp xúc giữa đường ràng buộc ngân sách với đường bàng quan thể hiện sự lựa chọn tốt nhất của cá nhân về tiêu dùng ứng với mỗi mức thu nhập [xem đồ thị 2.2]. Ví dụ 2.1: Giả sử thu nhập (X) và tiêu dùng (Y) của 3 cá nhân có giá trị cụ thể như sau: X [thu nhập] 5 10 15 Y [tiêu dùng] 2.038 4.038 6.038 Bảng 2.1: Quan hệ giữa thu nhập và tiêu dùng Sử dụng phương pháp phân tích nêu trên, chúng ta có thể biểu diễn sự lựa chọn của mỗi cá nhân như sau: Trong đồ thị 2.2, hình vẽ thứ nhất, ta thể hiện sự lựa chọn của cá nhân về tiêu dùng ứng với mỗi mức thu nhập khả dụng. Khi họ có 5 triệu đồng thu nhập, họ giành cho tiêu dùng hiện tại Y là 2.038 triệu. Phần còn lại được đưa vào tiêu dùng trong tương lai S. Tương tự cho các mức tiêu dùng 4.08 và 6.038 ứng với các mức thu nhập khác là 10 và 15 triệu. Lê Hồng Nhật Trần Thiện Trúc Phượng 3 Kinh tế lượng ©2007 Tiếp theo, trong hình vẽ thứ hai, ta chỉ ra mối quan hệ giữa tiêu dùng hiện tại Y với từng mức thu nhập khả dụng X. Đó chính là mối quan hệ cơ bản, mô tả bởi học thuyết Keynes về tiêu dùng. Đồ thị 2.2: Sự lựa chọn tiêu dùng theo thu nhập của cá nhân. Như chỉ ra trên hình vẽ thứ hai, quan hệ giữa tiêu dùng và thu nhập: Y = f ( X ) , là mối quan hệ tuyến tính. Trong ví dụ vừa nêu, quan hệ đó có dạng cụ thể là: Y = 0.038 + 0.40 X Ý nghĩa của phương trình này như sau: - Nếu X = 0 thì Y = 0.038, điều này có nghĩa rằng người không có thu nhập vẫn tiêu dùng ở mức tối thiểu là 0.038 triệu đồng một tháng. - Hệ số 0.40 (hay khuynh hướng tiêu dùng theo thu nhập) cho biết, nếu thu nhập tăng lên 1 triệu thì tiêu dùng tăng lên 0.40 triệu. Tức là, mức tăng tiêu dùng không nhanh bằng mức tăng thu nhập. Lê Hồng Nhật Trần Thiện Trúc Phượng 4 Kinh tế lượng ©2007 Về trung bình, khi thu nhập tăng thì tỉ lệ giữa thu nhập và tiêu dùng (X/Y) ngày 2.038 4.038 6.038 càng giảm: . Điều đó kiểm chứng lại điều mà Keynes nói là, có một > > 5 10 15 tỷ lệ lớn hơn của thu nhập được đưa vào tiết kiệm khi người ta giàu lên. - Kết quả nghiên cứu trên phù hợp với những nhận định của Keynes về tiêu dùng. Một cách tổng quát, dạng hàm mô tả tốt nhất khuynh hướng tiêu dùng theo thu nhập của Keynes có dạng tuyến tính: Y = α + βX (α > 0, β ∈ (0,1)) (2.2) Như đã chỉ ra qua ví dụ, dạng hàm này thỏa mãn mọi nhận định của Keynes về tiêu dùng. Bây giờ, chúng ta hãy sử dụng các dữ liệu điều tra thực tế để nghiên cứu về nhu cầu tiêu dùng theo thu nhập thông qua lăng kính của học thuyết Keynes. Ví dụ 2.2: Số liệu về tiêu dùng trung bình (PERCONS) và thu nhập khả dụng (DISPINC) theo giá cố định theo năm 1972 của nền kinh tế Mỹ trong 10 năm 1970 – 1979: Năm 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 DISPINC 751.6 779.2 810.3 864.7 857.5 874.9 906.8 942.9 988.8 1015.7 ĐVT: tỷ dollars PERSCONS 672.1 696.8 737.1 767.9 762.8 779.4 823.1 864.3 903.2 927.6 Bảng 2.2: Số liệu gộp về thu nhập và tiêu dùng tại Mỹ (1970-79) (Nguồn: Economic Report of the President) Đồ thị mô tả mối quan hệ giữa thu nhập và tiêu dùng của Mỹ được chỉ ra dưới đây: Lê Hồng Nhật Trần Thiện Trúc Phượng 5 Kinh tế lượng ©2007 950 PERSCONS 900 850 800 750 700 650 700 750 800 850 900 950 1000 1050 DISPINC Đồ thị 2.3: Mối quan hệ giữa thu nhập và tiêu dùng của nền kinh tế Mỹ từ 1970 đến 1979. Mặc dù dữ liệu xem ra thể hiện khá tốt qui luật tuyến tính nêu ở trên nhưng rõ ràng mối quan hệ có tính xác định đó là không đủ để mô tả thực tiễn, vì còn rất nhiều yếu tố khác ảnh hưởng đến tiêu dùng (giới tính, tuổi tác, tâm lý,…). Nói chung, chúng ta không có tham vọng đưa hết tất cả mọi yếu tố ảnh hưởng tới tiêu dùng vào mô hình, mà chỉ những yếu tố quan trọng, thiết yếu nhất. Vì vậy, để có thể biểu diễn qui luât tiêu dùng trên thế giới thực, ta cần đưa thêm vào mô hình tuyến tính (2.2) một thành phần khác nữa, mang tính ngẫu nhiên, thể hiện sự tác động tổng gộp của các nhân tố nhỏ, không ổn định, tới tiêu dùng. Tức là, những yếu tố làm cho quan sát thật về tiêu dùng và thu nhập bị lệch khỏi xu thế ổn định, tuyến tính (2.2) nêu trên. Tức là, ta muốn biểu diễn mối quan hệ thực giữa các cặp dữ liệu quan sát được về thu nhập và tiêu dùng {x n , y n }nN=1 như sau: y n = α + βxn + ε n , n = 1,2,3..., N . (2.3) Trong đó, ( X , Y ) = ( x n , y n ) : tiêu dùng và thu nhập thực tế của mẫu quan sát thứ n. Xét vế phải của phương trình (2.3), thành phần thứ nhất, α + βx n , là quy luật xác định [deterministic part], mà ta cần ước lượng; phần thứ hai, ε n , là nhiễu [random part]. (Tức là, ε n bao gồm sự tác động tổng hợp của mọi yếu tố khác của hoàn cảnh, có tính ngẫu nhiên, làm quan sát bị lệch khỏi khuynh hướng, hay qui luật ổn định). Cả hai phần này – tính xu thế, xác định; và yếu tố ngẫu nhiên - được gộp lại trong phương trình (2.3) để mô tả lý thuyết tiêu dùng của Keynes. Lê Hồng Nhật Trần Thiện Trúc Phượng 6 Kinh tế lượng ©2007 Do tác động của yếu tố ngẫu nhiên, trên đồ thị 2.3, chúng ta không quan sát thấy một đường thẳng thể hiện mối quan hệ tuyến tính Y = α + β X giữa tiêu dùng và thu nhập, như trên đồ thị 2.2 với số liệu giả định. Với dữ liệu điều tra thực tế, ta chỉ thấy một đám mây dữ liệu, dường như đang “bám” xung quanh một xu thế nào đó mà ta muốn ước lượng. Ví dụ 2.3: Dữ liệu điều tra 44 nhân khẩu của nhóm gồm 5 sinh viên K04 khoa Kinh tế về thu nhập và tiêu dùng đầu người hộ gia đình tại TP HCM, Bình Dương, Thủ Dầu Một, Bà Rịa - Vũng Tàu, Mỹ Tho, và Nghệ An được ghi lại như sau 1 : Obs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 INC 1 .00 1.10 0.70 1.40 0.50 0.40 0.55 0.80 0.70 0.25 0.65 0.40 1.80 0.40 0.50 0.30 1.00 0.50 0.80 1.40 0.80 0.60 CONS 0.60 0.65 0.48 0.90 0.38 0.23 0.32 0.48 0.45 0.18 0.40 0.25 0.95 0.25 0.30 0.20 0.50 0.25 0.45 0.70 0.45 0.35 ĐVT: triệu đồng Obs INC CONS 0.50 0.35 23 0.70 0.38 24 0.40 0.20 25 0.55 0.35 26 0.50 0.35 27 0.90 0.55 28 0.40 0.30 29 0.31 0.22 30 1 .20 0.65 31 0.60 0.40 32 0.30 0.20 33 0.80 0.40 34 0.44 0.28 35 0.50 0.39 36 1.00 0.60 37 1.80 0.90 38 1.40 0.70 39 1.50 0.75 40 1 .20 0.60 41 0.80 0.45 42 0.90 0.45 43 1.50 0.78 44 Bảng 2.3: Điều tra về thu nhập và tiêu dùng đầu người hộ gia đình tại một số tỉnh Việt nam (Ghi chú: INC và CONS là thu nhập và tiêu dùng đầu người, đơn vị triệu đồng, tính tại thời điểm tháng 6, 2006.) 1 Trưởng nhóm nghiên cứu này có mã số sinh viên là K 04 406 0975 Lê Hồng Nhật Trần Thiện Trúc Phượng 7 Kinh tế lượng ©2007 CONS vs. INC 1.0 0.9 0.8 CONS 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.4 0.8 1.2 1.6 2.0 INC Đồ thị 2.4: Thu nhập và tiêu dùng đầu người hộ gia đình tại một số tỉnh ở Việt Nam, năm 2006. Như chỉ ra trên đồ thị, dữ liệu điều tra về tiêu dùng và thu nhập đầu người của hộ gia đình Việt nam tại một số tỉnh được điều tra cho thấy học thuyết tiêu dùng của Keynes phản ánh khá đúng về quy luật tiêu dùng của hộ gia đình tại các địa phương này. Bước tiếp sau là chúng ta hãy sử dụng những dữ liệu quan sát được này để xác định trở lại các tham số α , β trong mô hình hồi quy tuyến tính (2.2) và (2.3). 2.3. Ước lượng qui luật tiêu dùng: Ta hãy vẽ các cặp quan sát về thu nhập và tiêu dùng {x n , y n }nN=1 lên đồ thị. Giả sử vạch đỏ trên đồ thị 2.5 dưới đây mô tả đường ước lượng quy luật tiêu dùng theo thu nhập. Nói khác đi, ta muốn ước lượng xu thế tiêu dùng bằng qui luật tuyến tính: yˆ n = αˆ + βˆx n (2.4) Trong đó, ŷ n là ước lượng về tiêu dùng, khi cho trước quan sát thu nhập x n . Tương ứng, αˆ , βˆ : các tham số ước lượng của các tham số tổng thể, chưa biết α , β . Lê Hồng Nhật Trần Thiện Trúc Phượng 8 Kinh tế lượng ©2007 o ( yn , xn ) yn • o ^ yn o o o o o o o en o 0 xn Đồ thị 2.5: Ước lượng quy luật tiêu dùng qua các quan sát (x n , y n ), n = 1, N Mức độ tốt của việc ước lượng có thể được đo lường qua số dư (residual): en = y n − yˆ (2.5) Như đã nói, y n là giá trị quan sát thực tế về tiêu dùng ứng với thu nhập xn . Và ŷ n : giá trị ước lượng về tiêu dùng. Về mặt toán học, ta có thể viết tổng bình phương của sai số ước lượng (2.5) như sau: ∑ e = ∑ ( yn − yˆ n) 2 n n 2 n (2.6) Sử dụng quan hệ (2.4), ta viết lại tổng bình phương sai số [error sum of squares], ký hiệu là ESS, ghi trong (2.6) như sau: ∑e n Lê Hồng Nhật Trần Thiện Trúc Phượng 2 n ^ ^ = ∑n ( y n − α − β x n ) 2 (2.7) 9 Kinh tế lượng ©2007 Một cách tự nhiên, chúng ta muốn rằng tổng bình phương sai số phần dư là nhỏ nhất. Vì vậy phương pháp có tên gọi là bình phương cực tiểu [Least Squares]: ^ ^ S (αˆ , βˆ ) = ∑ n ( y n − α − β x n ) 2 → min (2.8) Lưu ý rằng ở bài toán (2.8), chúng ta muốn chọn các tham số ước lượng αˆ , βˆ sao cho tổng bình phương các sai số ước lượng, ESS, là nhỏ nhất. Sử dụng điều kiện tìm điểm cực trị, (first order condition, FOC), chúng ta thấy rằng: ∂S (αˆ , βˆ ) = 2∑n ( y n − αˆ − βˆ ⋅ x n )(−1) = 0 ∂αˆ (2.10) ∂S (αˆ , βˆ ) = 2∑n ( y n − αˆ − βˆx n )(− x n ) = 0 ∂βˆ (2.11) Từ (2.10) ta có: αˆ = y − βˆ ⋅ x ⇒ y = αˆ + βˆ ⋅ x ^ (2.12) ^ ^ Nói khác đi, điểm ( x , y ) nằm trên đường hồi qui y n = α + β x n . Tiếp theo, từ phương trình (2.11), ta cũng có: ∑ n y n x n = αˆ ∑n x n + βˆ ∑n x n2 Thay thế αˆ = y − βˆ ⋅ x trong (2.12) vào biểu thức trên, sắp xếp lại các vế, ta tìm ra: ∑ (y n n − y ) x n = βˆ ∑n ( x n2 − n ⋅ x 2 ) Hay cũng vậy, βˆ = ∑ ( x − x )( y − y ) ∑ (x − x) n n 2 n Lê Hồng Nhật Trần Thiện Trúc Phượng n (2.13) n 10
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.